(16x^3-8x^2+4x^4)/(2x)

Simple and best practice solution for (16x^3-8x^2+4x^4)/(2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (16x^3-8x^2+4x^4)/(2x) equation:


D( x )

2*x = 0

2*x = 0

2*x = 0

2*x = 0 // : 2

x = 0

x in (-oo:0) U (0:+oo)

(4*x^4+16*x^3-(8*x^2))/(2*x) = 0

(4*x^4+16*x^3-8*x^2)/(2*x) = 0

4*x^4+16*x^3-8*x^2 = 0

4*x^2*(x^2+4*x-2) = 0

x^2+4*x-2 = 0

DELTA = 4^2-(-2*1*4)

DELTA = 24

DELTA > 0

x = (24^(1/2)-4)/(1*2) or x = (-24^(1/2)-4)/(1*2)

x = (2*6^(1/2)-4)/2 or x = (-2*6^(1/2)-4)/2

4*x^2*(x-((-2*6^(1/2)-4)/2))*(x-((2*6^(1/2)-4)/2)) = 0

(4*x^2*(x-((-2*6^(1/2)-4)/2))*(x-((2*6^(1/2)-4)/2)))/(2*x) = 0

( 4*x^2 )

4*x^2 = 0 // : 4

x^2 = 0

x = 0

( x-((-2*6^(1/2)-4)/2) )

x-((-2*6^(1/2)-4)/2) = 0 // + (-2*6^(1/2)-4)/2

x = (-2*6^(1/2)-4)/2

( x-((2*6^(1/2)-4)/2) )

x-((2*6^(1/2)-4)/2) = 0 // + (2*6^(1/2)-4)/2

x = (2*6^(1/2)-4)/2

x in { 0}

x in { (-2*6^(1/2)-4)/2, (2*6^(1/2)-4)/2 }

See similar equations:

| y=-1.7x | | 14a=dc-3aforc | | 2(b+9)=2(-b-3) | | 4x+20=5+9 | | 2x^2-32x+50=0 | | 9-2(8+7s)= | | 8+2k=180 | | ((3)/(5x+2))-((5x)/(25x^2-4)) | | 10x^2=-240 | | -8n+8(6n+6)=6(-2+6n) | | 4x+x-7=4x+6 | | 8+2k=3k+7 | | 6(1-m)+2m= | | 3000/1.1 | | -7(9a+11)-2(11a+3)=-10a+8a | | y-220=-2(x-60) | | 19-(33+16s)= | | x=7y-x/y | | 4x^2-16xy-9x+3y=0 | | 6(4-2r)-5= | | 5=-13+3x | | -0.75=9y | | -5x+6y=19 | | 4(T-2)+8T=4(3t+5)-8 | | 6x+8y=-8 | | 4x^2-2x+78=180 | | -3x+12=27 | | 2(5+5n)=-(9n-10)-6n | | (13x-16)12=1400 | | 4y-(-7)=43 | | -(7+13z)-4= | | 23+r=16 |

Equations solver categories